
Systematic lower bounds for lattice Hamiltonians

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1989 J. Phys. A: Math. Gen. 22 1577

(http://iopscience.iop.org/0305-4470/22/10/013)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 12:39

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/22/10
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 22 (1989) 1577-1588. Printed in the UK 

Systematic lower bounds for lattice Hamiltonians 
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Department of Atomic Physics, Roland Eotvos University, Puskin utca 5-7, 1088 Budapest, 
Hungary 

Received 4 August 1988 

Abstract. The variational version of the Weinstein-Aronszajn method, for constructing 
sequences of intermediate Hamiltonians with spectra converging to the exact eigenvalues 
from below, is revived for lattice theories. A first test is performed on the critical Ising 
quantum chain and U(1)-invariant gauge systems. Special emphasis is put on applications 
to degenerate levels. A related upper bound construction is also discussed. 

1. Introduction 

In Hamiltonian formulation, the solution of lattice field theories is still in its exploratory 
phase. Most of the effort is spent on accurate characterisation of the ground state. 
This question is of considerable interest in statistical physics problems such as the 
existence of the antiferromagnetic order and its role in high temperature superconduc- 
tivity. In quantum field theories one is mainly interested in the excitation spectrum. 

Two types of systematic approach have been applied in this context so far. Various 
versions of the Hamiltonian Monte Carlo method (Kalos 1962, Chin et al 1985, Heys 
and Stump 1983, Barnes et a1 1986) should yield accurate eigenvalues and eigenvectors, 
when statistical errors are reduced. Among the numerous non-stochastic methods the 
popularity of the Linczos algorithm is growing (Irving 1985). Its iterated application 
(Alberty et al 1984, Dagotto and Moreo 1985) to states having non-zero overlaps with 
the exact levels yields systematic upper bounds for each level of the spectra. 

The main difficulty with the Hamiltonian strategy is the explosively increasing 
number of states when, for instance, weak coupling calculations are performed in a 
strong coupling basis. 

To cure this shortcoming, in stochastic methods importance sampling techniques 
are applied with the help of trial (variational) ground-state functionals forcing the 
random walk in the Hilbert space to its most significant part. 

Various proposals for the effective truncation of the state space have been tested 
for the LBnczos method too (Patkos and Rujin 1985). Another direction of research 
is the variational generalisation of the Linczos method (Duncan and Roskies 1985). 
In the latter case the application of weak coupling bases to lattice calculations has 
also been attempted. 

The purpose of the present paper is to investigate the potential applicability of 
another systematic approach for finding lower bounds to the spectra. This non- 
stochastic algorithm eventually converges to the exact values. The algorithm has been 
known for quite some time, having grown out from the results of Weinstein (1935). 
(For reviews see Fox and Rheinboldt (1966) and Abdel-Raouf (1982).) The present 
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form which is called a 'sequence of intermediate problems of second type' was proposed 
by Aronszajn in the early 1950s. Its application to quantum theory apparently stopped 
at the lithium atom (Reid 1974). 

The main technical interest of the method is that at each intermediate stage the 
eigenvalue problem is reduced to a finite Hilbert space. 

One constructs an infinite sequence of so-called intermediate problems: 

(1.1) 

H = H(O)+ B (1.2) 

H ( k )  = ~ ( 0 )  + ~ ( k )  

starting with an almost arbitrary split of the original Hamiltonian into two parts 

where B should be a positive operator ((U, Bu) > 0). Exploiting the max-min principle 
and the monotonicity principle of Weyl (Fox and Rheinboldt 1966) one establishes 
the inequalities 

lim A,(exact). (1.3) ~ { k )  A j k + l J  

k-m 

The index ( k )  is called the order of the approximation and practically equals the 
number of energy layers of H(O) where H ' k J  acts non-trivially (in a layer one might 
have several degenerate levels) while leaving in the complement of this subspace all 
the levels of H'O' intact. If H(') coincides with the strong coupling Hamiltonian, the 
extension of the Hilbert space of H'k' to H'k+''  follows the E-scheme proposed by 
Hamer and Irving (1983). 

In 0 2 we describe the most important features of the proposed method (which 
might be called the Weinstein-Aronszajn construction) using the evergreen example 
of the transverse Ising model for illustration. Some practical questions, related to 
applications to degenerate levels, which are not easily accessible in the mathematical 
literature are discussed in appendix 1. 

Section 3 presents the results from applying the method to simple gauge-invariant 
systems. In particular, we took the example of a U(l)-symmetric chain of plaquettes 
studied recently by Barnes and Kotchan ( 1987) with stochastic Hamiltonian techniques. 
The accuracy of our estimates compares very favourably already at low orders to their 
guided random walk (GRW) counterparts. We point out the existence of some temporary 
numerical instabilities, which disappear when the calculations are pushed to sufficiently 
high order. The other gauge-invariant Hamiltonian studied below is that of a 2 x 2  
U( 1 )-symmetric plaquette system. The application of the proposed technique to systems 
of actual physical interest is under investigation, 

In order to reduce the number of variables as much as possible, we use Hamiltonians 
with maximal spatial gauge fixing. The explicit form of such a Hamiltonian is construc- 
ted in appendix 2.  

2. The intermediate problems of Weinstein and Aronszajn 

The construction is reviewed below through the example of the exactly solved Ising 
quantum chain: 

N N 

n = l  n = 1  



Systematic lower bounds for lattice Hamiltonians 1579 

Its splitting into the form (1.2) is defined as 

where U', ux are Pauli matrices. 

k x  k matrix 
The construction of the intermediate Hamiltonian M ' k '  starts with computing the 

M m n  =(UnIB-'Ium) 

H'o'lun) = A ,  (0) lu,) 

m, n = 1, . . . , k (2.3) 

where lu,) usually are chosen to be the lowest k eigenvectors of H'O': 

(2.4) 

(this is called the special choice of Bazley). For the moment we assume that all levels 
are non-degenerate; therefore each energy layer consists of a single level. 

The operator 

acts non-trivially in the k-dimensional subspace { Ium)}: .  ( M i :  denotes the inverse of 
the k x  k matrix Mmn.)  The higher eigenvalues coincide with those of H(O). (In the 
original literature they are called persistent.) The eigenvalue sequences of the sub- 
sequent H ( k )  operators obey the relations (1.3). 

Matrix elements of B-I were computed with help of the integral representation 
N X 

B-I = loK dz e-'* = lo dz e-'= n (cosh z + sinh Z U : U ~ + ~ ) .  ( 2 . 6 )  
i = l  

The translationally invariant subspace has been investigated both in the sectors even 
and odd under spin reflection U' + -d. Then M,, can be written as 

I, = loK dz e-zo[(cosh z)N-'(sinh z)'+(sinh z)N-t(cosh z ) ' ]  (2.7) 

where the integers K;,, were found with a computer program. 
The variation of a offers the possibility for optimising the estimate. The optimal 

choice can be best explained in a graphic way. In figure l (a )  the eigenvalues of H(O) 
are depicted as functions of a. In the k = 1 approximation only the lowest level A',''(a) 
is replaced by a new estimator A',''(a). This estimate can be shown easily to increase 
monotonically (appendix 1). The new level scheme is displayed in figure l ( b ) .  It is 
self-evident that aopf is located at the crossing of the curves A$' '(a) and AY) (a ) .  In 
the kth-order intermediate problem the best ground-state estimate comes from the 
crossing of the A',k'(a) and A P J l ( a )  curves. 

In field-theoretic models most eigenstates of H'O' are degenerate. Next, we extend 
the above analysis to degenerate spectra. 

Assume that A:"'(a) is g-fold degenerate above the unique A(10'(a) level. We wish 
to find aopt for A\')(a),  when I < g + 1. This last condition means that the degenerate 
subspace is only partially incorporated into the Weinstein- Aronszajn construction. 
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Figure 1. ( a )  Eigenlevels of ( a )  H‘’’(a) and ( b )  of the first intermediate problem as a 
function of the variational parameter a. 

n n 

In appendix 1 we show that the function h\”(a) takes invariantly the same value 
for a = .byt until 1 < g + 1. As for 1 < g + 1 there is at least one level of the degenerate 
layer hio’( a )  which is still persistent; the crossing point which determines remains 
the same. Only for 1 = g + 1, when the layer Ay’( a) is exhausted, is ab“,:” pushed to 
larger values as it is determined by the crossing of A P t l ) ( a )  and h Y ) ( a ) .  The above 
phenomenon is easily generalised to higher-lying degenerate levels, as illustrated in 
figure 2, where the subsequent ground-state energy estimates are displayed, as the 
tenfold degenerate A Y ’  layer of the N = 8 Ising chain is gradually included into the 
Weinstein- Aronszajn construction. 

For this reason in our tables below, we refer to the serial number of the energy 
layers and not of the levels of H‘O’ as the order of the approximation. This natural 

si- 
r 
W 

a 

Figure 2. Evolution of the ground-state energy estimate when a degenerate energy layer 
is gradually included into the intermediate problem. Dotted curves display subsequent 
ground-state estimates and full lines indicate the untouched H“’ levels as a function of a. 
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organisation of the H‘” spectrum has been used earlier in the truncation of the strong 
coupling basis and is called the E-scheme by Hamer and Irving (1983). 

We illustrate the accuracy of the method on the example of the critical Ising model 
(x = 1 in equation (2.1)). Table 1 shows the evolution of the ground-state energy in 
the first three orders for chains of size N = 8 ,  9, 10 and 12. Also given are the ab‘d, 
values and the known exact A ,  eigenvalues. 

We conclude this section with three remarks. Finite-size corrections to the energy 
density of two-dimensional infinite systems at the critical coupling are fully determined 
by their conformal characterisation (Blote et a1 1986, Affleck 1986). In figure 3 the 
correction for periodic chains computed with the present technique is compared with 
the theoretical prediction. The agreement is quite remarkable. Nevertheless, on a finer 
scale the deviation for N = 10-12 can be clearly seen even at third order. 

Another practical observation might be that the variational parameter a can be 
optimised independently for each level. The lower half of table 1 presents estimates 

Table 1. The ground-state energy of the king quantum chain from Weinstein’s method as 
a function of size N. (The meaning of the different entries is explained in the text.) 

I A:,,,, A C l )  A“’ A(3’  a ( 3 )  
opt N 

8 - 12.07 -10.31 -10.252 04 14.252 04 -10.251 66 
9 - 14.03 -11.66 -11.51949 14.51949 -11.517 54 

10 -16.01 -13.08 -12.791 01 14.791 01 -12.78490 
12 -20.00 -16.33 -15.35441 15.354 41 -15.322 59 

a ( 3 1  
N A :” O P l  

8 -8.691 51 12.691 51 -8.690 94 
9 -10.131 22 13.131 22 -10.128 36 

10 -11.542 07 13.542 07 -11.533 43 
12 -14.319 99 14.319 99 -14.278 39 

- 1 . 2 1  ’ I I I I I I I I 1 

2, -1 .5  
P I W -I 0 

0 

0 

First  order -’ T 1 
0 

-1  I 1 I I I I I I I I I I I I 
0 01 0 02 0 03 

N - 2  

Figure 3. Conformal correction to the ground-state energy of the critical k ing  chain. The 
full line is the theoretical prediction and the data points are the estimates given by the 
present numerical algorithm, improving with increasing order of approximation. 



1582 T Alma'ssy and A Patkds 

for the first excited state in the zero-momentum sector, even under spin reflection of 
the N = 8, 9, 10, 12 size chains. 

Following Bazley (1961) one can also find upper bounds for the spectra, using the 
Weinstein-Aronszajn algorithm. 

Consider the following splitting of the Ising Hamiltonian: 

where B is positive by a > N. Repeating the usual procedure one defines a sequence 
of intermediate problems: 

where B-I is now the inverse of the B operator from (2.8). One easily finds that the 
A i k '  eigenvalues for each index i form descending series, converging eventually to the 
true ith eigenvalue of H from above. Simple calculation shows that 

dA$k'/da 0 (2.10) 

i.e., the optimal estimate arises when a + CO. For the N = 8, 10 site long Ising chains 
this type of ground-state energy upper bounds were found from the third intermediate 
problem to be 1% accurate or better. 

3. Application to U( 1)-invariant gauge systems 

The simplest gauge-invariant lattice system, which could test the proposed method is 
the U( 1)-invariant periodic chain of plaquettes. Recently Barnes and Kotchan (1987) 
have obtained results for the ground state of this model using a guided random walk 
(RGW) algorithm. 

The Hamiltonian of this system is easily obtained using appendix 2, because (A2.10) 
can be readily adapted to one-dimensional systems. The analogue of the constraint 
(A2.11) is absent, therefore in place of (A2.12) one finds: 

(3.1) 

The splitting of the full Hamiltonian into the form (1.1) was chosen as 

where Bl = 2Ptaf,  B 2 =  PS/at. In order to be able to compare our results directly with 
those of Barnes and Kotchan (1987) we set 

B1 = U P  B 2 = p .  

The intermediate problem is then worked out 
(3.3) 

in the eigenvector set of H(O): 
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For the shortest chain ( N  = 2 )  we have performed the diagonalisation up to seventh 
order, where the dimension of the active subspace was 43. In table 2 the evolution of 
the estimates for the ground-state energy density ( E , / 2 )  are given in the range p = 
1.0-4.0 from fifth to seventh order. For comparison partly the GRW estimates are 
given, and partly the o(p - ' )  weak coupling results derived also by Barnes and Kotchan 
(1987). It is notable that for p = 2.5 the result of the present investigation follows 
closely the weak coupling prediction, while the Monte Carlo simulation clearly overesti- 
mates it. 

The empty entry at p = 2.5 in the fifth order of the approximation results from the 
instability of the corresponding intermediate problem in that range of a where the 
crossing should occur. In figure 4 the interval left out from the monotonically rising 
curve of the ground-state estimate can be characterised by the occurrence of a negative 
eigenvalue. This interval shifts away from the crossing region for higher-order approxi- 
mations and the ground-state eigenvalue can be found with confidence. 

Table 2. The ground-state energy of the U(  1)-gauge symmetric plaquette chain as a function 
of p. 

dim 31 dim 37 dim 43 
N P  order 5 order 6 order 7 GRW sc E wc E 

2 0.5 
1 .o 
1.5 
2.0 
2.5 
3.0 
3.5 
4.0 
4.5 

0.468 882 
0.767 073 
0.870 860 
0.902 122 

0.923 598 
0.927 373 
0.928 101 
0.926 121 

0.468 883 0.468 883 
0.767 073 0.767 072 
0.870 868 0.870 867 
0.902 209 0.902 219 
0.916 448 0.916 506 
0.924 966 0.925 158 
0.930 495 0.930 957 
0.933 961 0.934 871 
0.935 752 0.937 310 

0.4702 0.001 0.468 882 
0.767 * 0.003 0.766 927 0.835 447 
0.873 i 0.006 0.882 020 
0.899 i 0.009 0.904 151 
0.9541 0.015 0.917 060 

0.925 512 
0.931 473 
0.935 904 
0.939 325 

dim 1 dim 17 dim 33 
order 1 order 2 order 3 GRW 

8 0.5 0.466 705 0.468 295 0.468 831 0.469 i 0.000 

GRW: gcided random walks. 
SCE: strong coupling expansion 
WCE: weak coupling expansion. 

L 
A 

0 916 00- 

2 1470 2 1471 2 1472 2 1473 
a 

Figure 4. The instability of the ground-state energy estimator in the fifth order of the 
approximation ( N  = 2, U(1) gauge model). Along the suspended section of the dotted line 
a spurious negative eigenvalue of H'5' appears. 



1584 T Almassy and A Patkds 

The last row of table 2 presents for illustrative purposes the energy density (E0/8) 
of the N = 8 system at p = 0.5 in the first three orders of the approximation (33 states). 

Another often-used test-system is the U( 1)-symmetric quantum plane, the Hamil- 
tonian version of the (2+1)-dimensional periodic QED. This system is fairly well 
understood on different levels of mathematical rigour (Polyakov 1977, Mack and 
Gopfert 1981). Here we report results for the smallest 2 x 2  plane. The Hamiltonian 
directly follows from (A2.13) and is given as 

Ho = t p - ' [ (  T ,  + 7T2 - 7r3)2+ ( 5 7 1  - T*+ 7T3)2+2(7rl - 7T* - T J 2 ]  - p a  
B = p [  a -cos 0, -cos 02 -cos o3 -cos(@, + @*+ @,)I (3.5) 

where &a,= & / a t =  p and r1 = -id/aO, are understood. The construct has been 
performed up to fourth order. The degeneracies of the energy layers to this order are 
given as: 1, 12, 6, 24. No instability range of a was detected. The evolution of the 
ground-state energy in the range p = 0.5 - 2.0 is shown in table 3. Towards the weak 
coupling ( p  + CO) regime the quality of the eigenvalue estimates deteriorates. At the 
same time the value of aopf approaches quickly to the trivial value of a =4. The last 
column of this table gives the upper bounds from the k = 4 intermediate problem (2.9). 

Table 3. The ground-state energy of the 2 x 2 U( ])-invariant plane system. The last column 
provides upper bounds based on equation (2.9). 

~~ ~ ~ 

dim 1 dim 13 dim 19 dim 43 dim 43 
p order 1 order 2 order 3 order 4 order 4 

0.5 -0.130 693 -0.127 598 -0.127 151 -0.127 106 -0.12697 
1.0 -2.0 -1.155 791 -1.086867 -1.079 189 -1.0583 
1.5 -4.66 -3.344 435 -2.954 468 -2.884 329 -2.7127 
2.0 -7.0 -6.0 -5.122953 -4.910992 -4.3935 

We conclude that the above exploratory studies demonstrate the competitivity of 
the Weinstein method with other Hamiltonian algorithms. In particular, simultaneous 
application with the related upper bound estimates ( 0  2) gives a clear indication of 
the accuracy of the levels, obtained to a given order. 

Different splitting of the Hamiltonian operator would be welcome for applications 
in the weak coupling regime. Also some other variant of the use of the variational 
parameter a might lead to considerable improvements. 
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Appendix 1 

In order to have simpler formulae we work out specifically the second-order approxima- 
tion where the unique ground state and a g-fold degenerate excited level are assumed 
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to be present in H‘O’. The first improved eigenvalue estimate is obtained from the 
one-dimensional intermediate problem 

( A l . l )  
1 

H “ ’ ( a )  = H‘O’+- l U l ) ( U l ~ .  
Ml1 

By simple algebra one finds the inequality 

(Al .2)  

which means the monotonic increase of A \ ”  with a. The optimal estimate is determined 
by the equality 

(A1.3) 

Next one proceeds to the intermediate problem incorporating 1 < 1 < g + 1 levels at 
a = aopt. The g - 1 + 1 degenerate levels left outside the construction, at the present 
stage, take for a = aopt still the same values. The modified levels are found from 
diagonalising: 

With help of (A1.3) one verifies easily that 

detlH”’(aop,) - A ~ ) ( a o p , ) I ~  = O .  (A1.5) 

This means that A\‘)(a) crosses the lowest persistent eigenvalue again at a = aopt. 
Simple geometric consideration yields, taking into account the inequality (Al.2),  that 

(A1.6) 

These results are easily extended to higher degenerate layers. 

Appendix 2 

The Hamilton operator of U( 1)-symmetric gauge systems in 2 +  1 dimensions will be 
derived with spatial gauge fixing. The procedure is that of Choe et al  (1988). 

One starts with the Euclidean action 

(A2.1) 
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where the Oi are angular variables. One evaluates the integrals over the time-like link 
variables @,(x) = +(x) taking the limit p, + m in the action of the transfer operator: 

( f ~ ) [ @ i ( x + e 3 ) 1  

= exp(ps c cos[Ol(x + e,) + e 2 ( x  + e, + e,) 

x exp( P, c c cos[+(x) - +(x+e, )  - A @ , ( ~ ) I ) F [ @ ~ ( ~ ) I .  (-42.2) 
x e, 

Here we have introduced A@, = @,(x+e3)  -@, (x ) ,  the variation of the variable @,(x) 
between two time slices. 

The integrals become simple Gaussians in the @ + C O  limit. The result will be 
expressed in terms of the Fourier coefficients of O I ( x ) :  

2T 
G I ( k )  =KC O l ( x )  exp( -i k x )  

One introduces in the space of the four-dimensional vectors 

0 6  k l S  N - 1. (A2.3) 1 0 6  x, S N - 1 
X 

W ( k )  ={Re A G , ( k ) ,  Im A G , ( k ) ,  Re A d , ( k ) ,  Im A G 2 ( k ) }  (A2.4) 

a new set of basis vectors: 

COS 21rkll N - 1 
5 - N-‘12[ sin 21rk,/ N 1 

COS 21rkJ N - 1 I -  

sin 21rk,/ N 

- s i n 2 ~ k , / N  \ 

I COS 2 ~ k , /  N - 1 
-sin 2nk2/ N 

\COS 2 ~ k J  N - 1 J 
-cos Irk,/ N sin r k 2 /  N 

sin r k l /  N cos rk2/  N 
sin rk , /  N sin r k 2 /  N 

-sirirk,/ N sin mk2/ N 

sin Irk,/ N sin rk2/  N 
-sin rk , /  N cos ~ k , /  N 

& ( k ) =  N-‘”( -sin T k , /  N sin ~ k , /  N 1 & ( k )  = N-‘I2[ cos rk , /  N sin r k 2 /  N 1 
(442.5) 

where N = [ s i n 2 ( ~ k , / N ) + s i n 2 ( ~ k 2 / N ) ] .  Denoting Wel by q, the result of the + 
integration takes the very simple form: 

e x p I p , ~ c o s O , ( x ) }  I - x  n‘fi k, j = 1  d %  J f i d G , ( k = O )  I 

(A2.6) 

exp( -pt c A G , ( ~ Y - P ,  C‘ k, j = 3  i ~ ( t ) ’ ) .  

The subscript kf and the prime in the above formula refer to the independent k 
components (O*(k)  = @( N - k ) )  and also the integration over the k = 0 components 
is separated. 

The components w l ( k )  and W 2 ( k )  are missing from the kernel of (A2.6); therefore 
the convergence over these variables would not be ensured. This dictates the choice 
of the following gauge conditions: 

W l ( k ) =  W 2 ( k ) = 0  k E k, k # 0. (442.7) 
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The dependence on the W, and W4 variables can be re-expressed in simple terms when 
using the plaquette variables: 

O,(x + t (  e, + e 2 ) )  = 0,( x) + 0 2 ( x  + e,) - O,(x + e2)  - O,(x). (A2.8) 

Using its Fourier expansion one finds 

Here we assume that the wavefunctional depends only on gauge invariant variables. 
It is obvious from (A2.9) that the d,(k = 0) variables follow free dynamics; therefore 

the lowest energy values of the system correspond to the unexcited state of these 
degrees of freedom. The non-trivial dynamics is expressed solely through plaquette 
variables. 

Their effective classical Hamiltonian is given by 

( A2.10) 

where the time derivative 6, = AO,/a, is introduced and the time-continuum limit is 
defined by keeping &at and PS/a t  fixed. 

The canonical quantisation of (A2.10) is subject to the constraint 

O,(x,) = 0. 
XP 

(A2.11) 

This constraint is taken into account simply by expressing one arbitrarily chosen 
plaquette from it and substituting this expression into the formulae relating the 
independent d( k )  variables to the independent O(x) variables. 

The result of the standard procedure for the kinetic part of the Hamiltonian is 
slightly different for the N = even and N = odd cases: 

(A2.13) 

if N =even. The difference vanishes when N + CO, but for very small systems it is 
important. For the N = 2 toy model discussed in the text, it gives a change of factor 
2 in the kinetic term. The prime over the summations in (A2.12) and (A2.13) means 
that an arbitrarily chosen plaquette has been left out. The Hamilton operator is obtained 
by replacing the canonical momenta .TT,(x) by -id/dO,(x). 
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